1. Make up some data, and complete the distribution below:

X

f

%

Cum f

Cum %

 

 

9

15

4.9

205

100.0

8

15

7.3

195

95.1

7

21

10.2

180

87.8

6

32

15.6

159

77.6

5

46

22.4

127

62

4

31

15.1

81

39.6

3

23

11.2

50

24.5

2

18

8.8

27

13.3

1

9

4.4

9

4.5

N= 205 99.9  

 

 

 

 

 

 

 

2. For the following data:

22 37 14 17 27 41 30 13 19 21 49 37 29 20 16 17 34 16 35 24 16 12 29 30

X

f

%

Cum f

Cum %

10

 

9

8

7

6

5

4

3

2

1

 

N=    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Which is more appropriate, a regular or a grouped frequency distribution table? Explain why.

b. Construct the appropriate table.

c. Based on the table, what is the shape of the distribution?

 

 

 

 

 

 

 

3.         Use SPSS to analyze the data in the table below:

Midterm Exam Scores

Males

Females

87

53

92

70

78

73

91

60

77

82

85

33

88

98

88

43

78

85

92

96

48

56

67

73

68

n=25

89

73

91

76

75

89

81

83

68

86

55

89

89

70

93

66

88

79

58

67

77

82

93

67

79

n=25

 

 

 

  1. Create two variables in data sheet sex and Exam Score.
  2. Create a grouped distribution where I = 10, name the new variable interval.
  3. Create histograms of where I = 5, and I =10.
  4. Create a frequency distribution table of exam scores where I = 10, list all of the score class intervals 90-99 down to 30-39.
  5. Construct a table showing the descriptive statistics of both the ungrouped and grouped exam scores.
  6. Analyze the exam score for each gender separately showing the following:
    1. Descriptive statistics for each gender.
    2. Histograms for each gender.
    3. Stem-Leaf figures for each gender.
    4. Box Plots for each gender.
    5. List the Z-score values for each score in a table entitled :

Standardized Scores of Midterm Exam Scores.

Use the order calculator below and get ordering with essaygeek.com now! Contact our live support team for any assistance or inquiry.

Free Quote